
 
 

 

  

Abstract— In this work, a nonlinear passive controller to 
regulate the glucose concentration in Type-1 Diabetes Mellitus 
(T1DM) patients is presented; the controller computes the 
peripheral insulin delivery rate using measurements of 
peripheral glucose concentrations. First, the state-feedback 
problem is addressed with a constructive control framework 
via passivation by backstepping, yielding the attainable closed-
loop behavior, or in other words, the recovery target for the 
output-feedback (OF) design. Then, on the basis of 
observability considerations, an OF controller with reduced 
modeling requirements is derived, which includes a state 
estimator to compensate modeling errors and meal 
disturbances. The proposed nonlinear OF controller has a 
systematic construction and a simple tuning scheme, and is 
tested through numerical simulations on a T1DM patient under 
nominal, hyperglycemic, and hypoglycemic scenarios. 
Copyright © 2010 AMCA 
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I. INTRODUCTION 
Type-1 Diabetes Mellitus (T1DM) is a metabolic disease 

caused by the auto-immune destruction of pancreatic β-cells, 
resulting in an insufficient release of insulin into the blood 
stream. The direct effect of T1DM is a blood glucose 
concentration larger than 120 mg/dL (hyperglycemia) after 
meal ingesta; if this glucose concentration is held at 
hyperglycemic level for long periods of time, severe 
consequences (atherosclerosis and retinopathy, among 
others) are presented. For the preceding reasons, external 
daily insulin injections have become the most accessible and 
popular treatment of T1DM, on the basis of glucose 
concentration measurements. 

Motivated by the need of developing (i) suitable 
technology for insulin infusion and glucose monitoring, and 
(ii) automatic insulin delivery systems (artificial pancreas), 
the T1DM glucose control problem has been the subject of 
theoretical, simulation and clinical studies. The state of the 
art can be seen elsewhere (Hovorka, 2005; Chee and 
Fernando, 2007), and here it suffices to mention that, 
regarding control algorithms, several linear approaches have 
been proposed, including fuzzy logic-based (Campos-
Delgado et al., 2006), model predictive (Parker et al., 1999), 

 
 

H∞ (Ruiz-Velázquez et al., 2004) and classical PID 
(Ramprasad et al., 2004) control designs, with potential 
implementation in clinical trials due to their robustness 
features. However, given the highly-nonlinear behavior of 
carbohydrates metabolism (Sorensen, 1985), and the health 
condition variability in patients (such as the counter-
regulatory hepatic responses), linear controllers overlook 
important physiological phenomena (for instance, the effect 
of lactate on the periphery glucose uptake in exercise 
scenarios) and the controllers can lose dynamical 
information from patients.  

These observations rise the issue that motivates the 
present work: the design of a nonlinear controller that, on 
the basis of mass balances and glucose measurements, 
computes the insulin amount to keep the glucose 
concentration within normal levels (80 – 120 mg/dL) in 
T1DM patients. Methodologically speaking, we are 
interested in deriving a control scheme with: (i) a design that 
exploits the nature of carbohydrate metabolism but without 
including it into the control function, and (ii) robustness and 
simplicity features for practical implementation. 

In this work the problem is addressed via passivation by 
backstepping. First, the state-feedback (SF) problem is 
studied, establishing that the problem is solvable with a non-
passive controller underlain by a relative degree (RD) equal 
to 2. To remove this high-RD obstacle for robustness, a 
backstepping procedure (Sepulchre et al., 1997) is employed 
to draw a nonlinear passive SF controller whose response 
constitutes the attainable closed-loop behavior for the 
output-feedback (OF) design. Then, on the basis of 
observability considerations, a robust OF controller is 
designed, and includes a state estimator to compensate 
modeling errors and unknown load-like (meal) disturbances. 
The resulting OF controller has reduced modeling 
requirements, a systematic construction and a simple tuning 
scheme, and is tested through numerical simulations on a 
T1DM patient under nominal, hyperglycemic, and 
hypoglycemic scenarios.  

II. CONTROL PROBLEM 
In order to technically state our T1DM control problem, 

let us consider the physiological model proposed by 
Sorensen (1985), which describes the time evolution of the 
glucose, insulin and glucagon concentrations for non 
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diabetic and T1DM subjects. For modeling purposes, the 
human body is divided into compartments (brain, heart and 
lungs, liver, gut, kidney, and periphery) where mass 
balances are performed for glucose and insulin components, 
whereas the whole human body is regarded as a single 
compartment for the glucagon balance; physiologic 
compartments are connected via blood flows. From the 
preceding considerations, along with physiological and 
pharmacokinetic-pharmacodynamic arguments, the glucose-
insulin-glucagon dynamics are described by the following 
nonlinear ordinary differential equations: 

Glucose subsystem (1a) 

g. Bv = (qg
B/Vg

Bv)(gH - gBv) - (VBi/Vg
BvtB)(gBv - gBi) (1a.1) 

g. Bi = (1/tB)(gBv - gBi) - rBgu/VBi    (1a.2) 

g. H = (1/Vg
H)(qg

BgBv +qg
LgL +qg

KgK +qg
PgPv -qg

HgH -rRBgu) (1a.3) 

g. G = (qg
G/Vg

G)(gH - gG) + (rmeal - rGgu)/Vg
G,  d = rmeal (1a.4) 

g. L = (1/Vg
L)(qg

AgH + qg
GgG - qg

LgL + rHgp - rHgu) (1a.5) 

g. K = (qg
K/Vg

K)(gH - gK) - rKge/Vg
K   (1a.6) 

g. Pv = (qg
P/Vg

Pv)(gH-gPv) -(VPi/Vg
PvtgP)(gPv-gPi), yPv = gPv (1a.7) 

g. Pi = (1/tgP)(gPv - gPi) - rPgu/VPi,  z = yPi = gPi (1a.8) 

Insulin subsystem (1b) 

I
.
B = (qI

B/VI
B)(IH - IB) (1b.1) 

I
.
H = (1/VI

H)(qI
BIB + qI

LIL + qI
KIK + qI

PIPv - qI
HIH) (1b.2) 

I
.
G = (qI

G/VI
G)(IH - IG) (1b.3) 

I
.
L = (1/VI

L)(qI
AIH + qI

GIG - qI
LIL + rPIr - rLIc) (1b.4) 

I
.
K = (qI

K/VI
K)(IH - IK) - rKIc/VI

K (1b.5) 

I
.
Pv = (qI

P/VI
Pv)(IH - IPv) - (VI

Pi/V
I
PvtIP)(IPv - IPi) (1b.6) 

I
.
Pi = (1/tIP)(IPv - IPi) + (wi - rPIc)/VI

Pi,  u = wi (1b.7) 

Glucagon and auxiliary states subsystem (1c) 

Γ
.
 = (1/VΓ)(rPΓr - rPΓc)  (1c.1) 

f
.
2 = [(mΓ0

Hgp - 1)/2 - f2]/τΓ     (1c.2) 

m. I
Hgp = (mI∞

Hgp - mI
Hgp)/τI    (1c.3) 

m. I
Hgu = (mI∞

Hgu - mI
Hgu)/τI    (1c.4) 

 
The states (x) are: (a) glucose concentrations in the 

vascular (gBv) and interstitial (gBi) brain tissues, heart and 
lungs (gH), guts (gG), liver (gL), kidney (gK), and peripheral 
(skeletal muscle and adipose tissue) vascular (gPv) and 
interstitial (gPi) spaces; (b) insulin concentrations in the 
brain (IB), heart and lungs (IH), guts (IG), liver (IL), kidney 
(IK), and peripheral vascular (IPv) and interstitial (IPi) spaces; 

as well as glucagon (Γ) and metabolic auxiliary states (f2, 
mI

Hgp, and mI
Hgu). The exogenous input (d) is the 

carbohydrates absorption rate (rmeal). The regulated output 
(z) is the glucose concentration in the peripheral interstitial 
space (gPi). The measured outputs (y) are: the glucose 
concentrations in the peripheral vascular (yPv) and interstitial 
(yPi) spaces, meaning that the control scheme will be driven 
by subcutaneous glucose measurements. The control input 
(u) is the interstitial insulin delivery rate (wi), or in other 
words, a subcutaneous insulin supply is assumed. 

 
The hepatic glucose production (rHgp), hepatic glucose 

uptake (rHgu), renal glucose excretion (rKge), peripheral 
glucose uptake (rPgu), hepatic insulin consumption (rLIc), 
renal insulin consumption (rKIc), peripheral insulin 
consumption (rPIc), and glucagon release (rPΓr) and 
consumption (rPΓc) rates are set by the nonlinear functions 
(Sorensen, 1985): 

rHgp = γHgp(gL, Γ, f2, mI
Hgp), rHgu = γHgu(gL, mI

Hgu) (2a, b) 

rKge = γKge(gK), rPgu = γPgu(gPi, IPi) (2c, d) 

rLIc = γLIc(IH, IG), rKIc = γKIc(IK) (2e, f) 

rPIc = γPIc(IPi), rPΓc = γPΓc(Γ),  rPΓr = γPΓr(gH, IH) (2g, h, i) 

 
In compact notation, the glucose-insulin-glucagon model 

(1, 2) is given by 
 

x.  = f(x, d, u), x(0) = xo; y = Cyx, z = Czx    (3) 

where 

x = (gBv, gBi, gH, gG, gL, gK, gPv, gPi, IB, IH, IG, IL, IK, IPv, IPi, 

 Γ, f2, mI
Hgp, mI

Hgu)' 

d = rmeal,  y = (yPv, yPi),  u = wi,  z = gPi  
 
In a nondiabetic subject, the basal blood glucose 

concentration is about 80-100 mg/dL; after a meal, this 
concentration increases for a period of 2 hours, with a peak 
at 120-140 mg/dL. Thus, our problem consists in designing 
a robust nonlinear controller that, driven by the 
measurements (y and d), tracks the glucose concentration at 
euglycemic levels such that the regulated output motion z(t) 
resembles the one of a nondiabetic subject. For applicability 
purposes, the control design must exploit the nonlinear 
nature of carbohydrate metabolism and minimize the model 
dependency.  

III. STATE-FEEDBACK CONTROL 
In this section the nonlinear SF control problem is 

addressed under the assumption that the states and exact 
model are known and available for control. The purpose is 
the identification of the attainable closed-loop behavior, or 
equivalently, the recovery target of the proposed OF 
controller. 
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III.1 Backstepping procedure 
 
Following the nonlinear approach employed in a previous 

T1DM control study (Hernández-Ordóñez, 2003), the direct 
application of the standard geometric control method 
(Isidori, 1995) leads to the conclusion that the control 
problem is solvable with RD equal to 2, provided that the 
zero-dynamics (presented in the next subsection) are stable, 
and that the following invertibility condition is met: 

 
∂γPgu/∂IPi > 0    (4) 

 
From a constructive control viewpoint (Sepulchre et al., 

1997), control schemes with RD’s equal or higher than 2 
might present wasteful responses and nonrobust behavior. 
According to the abovementioned constructive control 
theory, a control scheme is robust if it is underlain by a 
passive structure, meaning RD’s equal to 1 and stable zero-
dynamics. 

In order to compensate the high RD obstacle for 
robustness, let us apply a backstepping procedure in the 
following form: regard the insulin concentration in the 
peripheral interstitial compartment as a virtual control (IPi = 
I*

Pi) to decompose the second-order RD insulin delivery rate 
(wi)-to-peripheral glucose (gPi) path into the series 
interconnection of two first-order RD paths: the insulin 
delivery rate (wi)-to-peripheral insulin (IPi) path, and the 
peripheral insulin (IPi)-to-peripheral glucose (gPi) path. 

 
III.2 State-feedback controller  
 
Recall (1a.8), regard its state IPi as a primary or virtual 

control I*
Pi, enforce the primary closed-loop LNPA (linear, 

noninteractive, pole assignable) tracking dynamics  
 

g. Pi = g-
.

Pi - kg(gPi - g-Pi)  

 
and solve (1a.8) for I*

Pi to obtain the primary SF controller: 
 

I*
Pi = (fg

Pi)
-1[gPv, gPi, g-

.
Pi-kg(gPi-g-Pi)] := γ*

i (gPv,gPi,g-Pi,g-
.

Pi,kg)  (5a) 

 
meaning that I*

Pi is the insulin time-varying setpoint, and its 
time derivative is given by 
 
I
.*
Pi = (∂γ*

i /∂gPv)(fg
Pv) + (∂γ*

i /∂gPi)(fg
Pi) 

 + (∂γ*
i /∂g-Pi)g-

.
Pi + (∂γ*

i /∂g-
.

Pi)g-
..

Pi    (5b) 
 
Enforce the secondary closed-loop LNPA tracking 

dynamics for the peripheral insulin concentration 
 

I
.
Pi = I

.*
Pi - ki(IPi - I*

Pi) 

 
and solve (1b.7) for wi to obtain the secondary SF 
controller: 

wi = VI
Pi[I

.*
Pi - ki(IPi - I*

Pi) - (1/tIP)(IPv - IPi)] + γPIc(IPi) 

 := γi(gPv, gPi, g-Pi, g-
.

Pi) (5c) 

 
The application of the preceding cascade SF controller 

(5) to the glucose-insulin-glucagon system (1) with the 
restriction gPi = g-Pi, yields the zero-dynamics: 

 

x. I = fI(xI, g-Pi, d, I*
Pi),  xI(0) = xIo     (6) 

xI = (gBv,gBi,gH,gG,gL,gK,gPv,IB,IH,IG,IL,IK,IPv,Γ,f2,mI
Hgp,mI

Hgu
)' 

I*
Pi = γ*

i (gPv, g-Pi, g-
.

Pi)  

 
III.3 Solvability conditions 
 
The SF control problem is solvable due to the fulfillment 

of the following conditions: 
i) The glucose-insulin-glucagon system has RD = 2 

because there is a univocal correspondence between the 
peripheral glucose uptake rate (rPgu) and the peripheral 
insulin concentration (IPi). In other words, the glucose 
uptake rate increases (4) with the insulin concentration, and 
this is a condition that is physiologically met. 

ii) The zero-dynamics (6) has a unique steady-state x- I 
which is asymptotically stable. It has been previously shown 
(Quiroz and Femat, 2007) that the state motions x(t) of the 
glucose-insulin-glucagon system are stable in a practical 
sense: the state motions x(t) remain arbitrarily close to the 
nominal one by making the parameter perturbations 
sufficiently small, yielding a unique steady-state. In our 
case, since the reference glucose evolution g-Pi is designed 
such that it resembles a healthy-person glucose evolution, 
the stability (in a practical sense) of zero dynamics (6) is a 
consequence of the state motion stability in nondiabetic 
subjects. 

 
It must be pointed out that, even though the SF controller 

(5) has a simple cascade structure, an estimator-based 
implementation of the preceding controller would require 
the detailed glucose-insulin-glucagon system (1) as well as 
metabolic rates (2), and this means a strong model-
dependency drawback for applicability. This consideration 
motivates the control model simplification to be developed 
in the next section. 

IV. OUTPUT-FEEDBACK CONTROL 
In order to reduce the model dependency of the control 

scheme, let us re-express the peripheral glucose 
concentrations dynamics (1a.7, 8) in the following form 

 

y. Pv = aPv yPv + bPv, yPv = gPv     (7a) 

y. Pi = (1/tgP)(yPv - yPi) - rPgu/VPi,  yPi = gPi     (7b) 
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where 
 

aPv = - [q̂g
P/V̂g

Pv + V̂Pi/(V̂g
Pv t̂g

P)] (8a) 

bPv = (qg
P/Vg

Pv) gH + (VPi/Vg
PvtgP) gPi  (8b) 

 
aPv is an approximation of hemodynamic parameters, and bPv 
is regarded as a “synthetic” load disturbance. Thus, given 
the available measurements and their time derivatives (yPv, 
yPi,   y

.
Pv, y

.
Pi), the algebraic solution of the system (7) for the 

pair (bPv, rPgu) is   
 

bPv = y. Pv - aPv yPv, rPgu = VPi [(1/tgP)(yPv - yPi) - y
.

Pi]  (9) 
 

meaning that the pair (bPv, rPgu) is instantaneously 
observable, or equivalently, in virtue of the invertibility 
condition (4), the peripheral insulin (IPi) and the load 
disturbance (bPv) can be quickly reconstructed via a state 
observer, say a Luenberger-type PI-geometric estimator 
(López and Alvarez, 2004). The direct application of this 
technique yields the next state estimator: 
 

ĝ
.

Pv = aPv ĝPv + b̂Pv + 2 ζPvωPv (yPv - ĝPv)   

b̂
.

Pv = (- 2 aPv ζPvωPv + ωPv
2) (yPv - ĝPv) 

ĝ
.

Pi = (1/tgP)(ĝPv - ĝPi) - γPgu(ĝPi, ÎPi)/VPi + 2 ζPiωPi (yPi - ĝPi) 

Î
.

Pi = (1/tIP)(ÎPv - ÎPi) + [wi - γPIc(ÎPi)]/VI
Pi  

 + 2 ζPvωPvκ1 (yPv - ĝPv) + (2 ζPiωPiκ2 + ωPi
2κ3)(yPi - ĝPi) 

x̂
.

i = fi(x̂i, ÎPi), xi = (IB, IH, IG, IL, IK, IPv)' 

 
where {ωPv, ωPi} [or {ζPv, ζPi}] is the set of the observer 
characteristic frequencies (or damping factors), and {κ1, κ2, 
κ3} is a set of nonlinear observer gains 
 

κ1 = - (1/tgP)/(∂fg
Pi/∂IPi),  κ2 = - (∂fg

Pi/∂gPi)/(∂fg
Pi/∂IPi) 

κ3 = 1/(∂fg
Pi/∂IPi) 

 
The combination of the preceding state estimator with the 

SF control yields the output-feedback (OF) controller: 

Glucose estimator  (10a) 

ĝ
.

Pv = aPv ĝPv + b̂Pv + 2 ζPvωPv (yPv - ĝPv)   

b̂
.

Pv = (- 2 aPv ζPvωPv + ωPv
2) (yPv - ĝPv) 

ĝ
.

Pi = (1/tgP)(ĝPv - ĝPi) - γPgu(ĝPi, ÎPi)/VPi + 2 ζPiωPi (yPi - ĝPi) 

 

 

Insulin estimator    (10b) 

Î
.

Pi = (1/tIP)(ÎPv - ÎPi) + [wi - γPIc(ÎPi)]/VI
Pi  

 + 2 ζPvωPvκ1 (yPv - ĝPv) + (2 ζPiωPiκ2 + ωPi
2κ3)(yPi - ĝPi) 

x̂
.

i = fi(x̂i, ÎPi) 

Set point filter (10c) 

Î
.
*
Pi = v̂*i  + 2 ζ*i ω*i (I*

Pi - Î*
Pi), v̂

.
*i  = (ω*i )2(I*

Pi - Î*
Pi) 

Cascade controller (10d) 

I*
Pi = γ*

i (ĝPv, ĝPi, g-Pi, g-
.

Pi, kg) 

wi = VI
Pi[v̂*i  - ki(ÎPi - I*

Pi) - (1/tIP)(ÎPv - ÎPi)] + γPIc(ÎPi) 

Structurally speaking, the controller has the following 
components: (i) a glucose concentrations observer (10a), 
with a reconstructible load term (bPv) that accounts for 
disturbance and plant/model parameters mismatch for the 
glucose subsystem (1a); (ii) an insulin estimator (10b) to 
infer the peripheral interstitial insulin concentration (IPi) on 
the basis of glucose measurements; (iii) a cascade controller 
(10d) with feedforward and feedback elements, and (iv) a 
linear filter (10c) which provides the set point derivative 
estimate v̂*i  of I*

Pi, and that has been introduced to circumvent 
the (cumbersome) analytic calculation, via equation (5b).  

Modeling requirements. As mentioned, a direct 
implementation of the SF controller (5) with a state observer 
(say an Extended Kalman Filter, a Luenberger observer or a 
PI-geometric type estimator), would yield a dynamic 
controller with a strong model dependency on the overall 
glucose-insulin-glucagon system (1) and the metabolic rates 
(2). This is so because the control law (5a) requires the 
peripheral (vascular) glucose concentration state (gPv), 
which in turn needs the on-line integration of the heart 
glucose concentration (gH) [see (1a.7) and (1a.3)], and thus, 
the integration of the ODE’s for all glucose states (1a), and 
glucagon and auxiliary states (1c). Here, in our proposed OF 
controller (10), the estimated load b̂Pv, which is 
reconstructed via the peripheral glucose measurements (yPv, 
yPi), replaces the heart glucose concentration state (gH), and 
thus, the glucose states (gBv, gBi, gG, gL, gK), glucagon (Γ) 
and auxiliary states (f2, mI

Hgp, and mI
Hgu) are not needed. 

Summarizing, the modeling requirements of our dynamic 
control scheme (10) are only: an approximated 
hemodynamic constant aPv (8a), the peripheral glucose 
uptake rate function (γPgu) and three insulin metabolic 
functions (2e-g), and these requirements are rather few in 
the light of the capability of the controller to handle the 
nonlinear nature of the original glucose-insulin-glucagon 
system (1).  

Convergence and tuning. The formal consideration of the 
closed-loop stability issue goes beyond the scope of the 
present work, and here it suffices to mention that the 
application of the Small Gain Theorem (Isidori, 1995; 
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González and Alvarez, 2005) to the system (1) in closed-
loop mode with the OF controller (10) leads to the following 
results: The observer gain (ω) should be tuned by 
considering the peripheral glucose eigenvalue λg

Pv as 
preliminary value (and then retune ω), and the primary (ki) 
and secondary (kg) control gains should be set sufficiently 
separated (kg < ki) and slower than the observer gain (ω): 

 
λg

Pv = - [(qg
P/Vg

Pv) + (VPi/Vg
PvtgP)],  kg < ki < ω   

 
This tuning should yield a closed-loop stable system (1) 

with the following features: (i) a non-wasteful control input 
wi (in the light of the cascade structure with RD’s = 1), and 
(ii) a glucose concentration (gPi) which is asymptotically 
tracked according to linear error dynamics and convergence 
rate fixed by the designer. 

V. APPLICATION EXAMPLE 
To evaluate the proposed OF controller (10) under typical 

scenarios, let us consider (through numerical simulations) a 
70-kg T1DM patient, under a carbohydrate intake of 50 g. 
The reference glucose evolution (g-Pi) is given by the next 
peak function: 

 

g-Pi(t) = g-b
Pi + APi e1-τ(t)-e-τ(t),   τ(t) = (t - tp)/w    

 
where g-b

Pi is the basal value of the peripheral interstitial 
glucose concentration, and {APi, tp, w} = {40, 70, 30} is a 
constant parameters set such that g-Pi(t) resembles the glucose 
evolution of a healthy subject. The parameter values for 
system (1) are reported by Sorensen (1985), and the 
carbohydrate absorption model (exogenous input, d = rmeal) 
was taken from Lehmann and Deutsch (1992). The 
controller was tested under nominal, hyperglycemic and 
hypoglycemic scenarios. For the purpose at hand, the 
hepatic glucose production rate function (γHgp) is given by 
the nonlinear function: 

γHgp(gL, Γ, f2, mI
Hgp) = mI

Hgp µΓ
Hgp(Γ, f2) µg

Hgp(gL) r*
Hgp    

  µg
Hgp(gL) = ag

Hgp - bg
Hgp tanh{cg

Hgp [(gL/101) - dg
Hgp]} 

where the constants {ag
Hgp, cg

Hgp} are two of the most 
sensitive parameters (Quiroz and Femat, 2007) such that 
hyperglycemic and hypoglycemic scenarios can be 
emulated.  

Following the tuning guides presented in section IV, the 
observer and control gains were set as follows: 

 
ω = ωPv = ωPi = ω*i  = 1 min-1,  ζPv = ζPi = ζ*i  = 0.71  
ki = 1/5 min-1, kg = 1/10 min-1   
 

In Figure 1, two closed-loop responses are shown with: (i) 
the SF control (5) with full-model dependency, and (ii) the 
OF control (10) with reduced modeling requirements.  
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Figure 1. Closed-loop responses with SF (- - -) and OF (__) controllers, 

and reference glucose evolution g-Pi(t) (.  .  .  .). 

 
Figure 1 shows that: (i) as expected from the theoretical 

developments (7-9), the OF controller (10), with fewer 
modeling requirements, basically recovers the behavior of 
the exact model-based SF counterpart (5), and with a control 
input (insulin delivery, wi) that is smooth (non wasteful) and 
away from saturation, and (ii) the glucose reference 
evolution (g-Pi) is adequately tracked, with slight deviations 
in the output-feedback case due to estimation errors 
dynamics. 

In Figure 2, two closed-loop responses are shown with: (i) 
the OF control under a hyperglycemic situation, by 
introducing a 50 % error in the constant ag

Hgp (nominal value: 
1.425) in model (1), and (ii) the OF control under a 
hypoglycemic situation, by introducing a 50 % error in the 
constant cg

Hgp (nominal value: 0.6199) in model (1). For 
comparison purposes, the response with the OF control and 
nominal model is also presented. As it can be seen in the 
figure: (i) glucose concentration is acceptably tracked, and 
(ii) in hyperglycemia situation, the insulin delivery rate (and 
insulin concentration) increases, whereas the controller 
behaves the other way around in hypoglycemia. 
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Figure 2. Closed-loop responses with OF controller, under nominal (__), 

hyperglycemic (- - -) and hypoglycemic (....) scenarios,  

and reference glucose evolution g-Pi(t) (.  .  .  .). 

VI. CONCLUSIONS 
A nonlinear constructive approach has been presented for 

the control of glucose concentration in Type 1 Diabetes 
Mellitus patients with glucose measurements. The result is a 
robust output-feedback controller that, on the basis of 
peripheral glucose measurements and mass balances, 
computes the insulin amount to track a prescribed glucose 
evolution. The OF controller recovers the behavior of an 
exact model-based state-feedback passive (cascade) 
controller. The key robustness-oriented step of the control 
design was performed by means of a backstepping 
procedure, employing the peripheral insulin concentration as 
virtual (primary) control input; the recovery property was 
accomplished via a state estimator to compensate the effect 
of modeling errors and unknown disturbances. The tracking 
of glucose concentration in a T1DM patient was considered 
as application example, such that the closed-loop glucose 
evolution resembles the one of a healthy (nondiabetic) 
person. The results show that: (i) the glucose reference 
evolution is acceptably tracked; (ii) as expected, the 

measurement-driven controller behaves like its more model-
dependent state-feedback counterpart, and (iii) the control 
performance is not significantly affected by typical 
parameter uncertainty. Further studies on the attainment of 
linearity are underway. 
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